메인 콘텐츠로 건너뛰기
W&B는 결국 W&B Model Registry에 대한 지원을 중단할 예정입니다. 사용자는 대신 모델 아티팩트 버전을 연결하고 공유하기 위해 W&B Registry를 사용하는 것이 좋습니다. W&B Registry는 기존 W&B Model Registry의 기능을 확장합니다. W&B Registry에 대한 자세한 내용은 Registry 문서를 참조하세요.W&B는 기존 Model Registry에 연결된 기존 모델 아티팩트를 가까운 시일 내에 새로운 W&B Registry로 마이그레이션할 예정입니다. 마이그레이션 프로세스에 대한 자세한 내용은 기존 Model Registry에서 마이그레이션을 참조하세요.
W&B Model Registry는 팀의 트레이닝된 모델을 보관하는 곳으로, ML 전문가가 프로덕션 후보를 게시하여 다운스트림 팀과 이해 관계자가 사용할 수 있습니다. 스테이징된/후보 모델을 보관하고 스테이징과 관련된 워크플로우를 관리하는 데 사용됩니다.
W&B Model Registry를 사용하면 다음을 수행할 수 있습니다.

작동 방식

몇 가지 간단한 단계를 통해 스테이징된 모델을 추적하고 관리합니다.
  1. 모델 버전 로깅: 트레이닝 스크립트에서 몇 줄의 코드를 추가하여 모델 파일을 아티팩트 로 W&B에 저장합니다.
  2. 성능 비교: 라이브 차트를 확인하여 모델 트레이닝 및 유효성 검사에서 메트릭 과 샘플 예측값을 비교합니다. 어떤 모델 버전이 가장 성능이 좋았는지 식별합니다.
  3. 레지스트리에 연결: Python에서 프로그래밍 방식으로 또는 W&B UI에서 대화식으로 등록된 모델에 연결하여 최상의 모델 버전을 북마크합니다.
다음 코드 조각은 모델을 Model Registry에 로깅하고 연결하는 방법을 보여줍니다.
import wandb
import random

# Start a new W&B run
run = wandb.init(project="models_quickstart")

# Simulate logging model metrics
run.log({"acc": random.random()})

# Create a simulated model file
with open("my_model.h5", "w") as f:
    f.write("Model: " + str(random.random()))

# Log and link the model to the Model Registry
run.link_model(path="./my_model.h5", registered_model_name="MNIST")

run.finish()
  1. 모델 전환을 CI/CD 워크플로우에 연결: 웹훅을 사용하여 워크플로우 단계를 통해 후보 모델을 전환하고 다운스트림 작업 자동화합니다.

시작 방법

유스 케이스에 따라 다음 리소스를 탐색하여 W&B Models를 시작하십시오.
I