A W&B Sweep combines a strategy for exploring hyperparameter values with the code that evaluates them. The strategy can be as simple as trying every option or as complex as Bayesian Optimization and Hyperband (BOHB).
Define a sweep configuration either in a Python dictionary or a YAML file. How you define your sweep configuration depends on how you want to manage your sweep.
Define your sweep configuration in a YAML file if you want to initialize a sweep and start a sweep agent from the command line. Define your sweep in a Python dictionary if you initialize a sweep and start a sweep entirely within a Python script or Jupyter notebook.
The following guide describes how to format your sweep configuration. See Sweep configuration options for a comprehensive list of top-level sweep configuration keys.
Basic structure
Both sweep configuration format options (YAML and Python dictionary) utilize key-value pairs and nested structures.
Use top-level keys within your sweep configuration to define qualities of your sweep search such as the name of the sweep (name key), the parameters to search through (parameters key), the methodology to search the parameter space (method key), and more.
For example, the proceeding code snippets show the same sweep configuration defined within a YAML file and within a Python dictionary. Within the sweep configuration there are five top level keys specified: program, name, method, metric and parameters.
Define a sweep in a Python dictionary data structure if you define training algorithm in a Python script or Jupyter notebook.
The proceeding code snippet stores a sweep configuration in a variable named sweep_configuration:
Within the top level parameters key, the following keys are nested: learning_rate, batch_size, epoch, and optimizer. For each of the nested keys you specify, you can provide one or more values, a distribution, a probability, and more. For more information, see the parameters section in Sweep configuration options.
Double nested parameters
Sweep configurations support nested parameters. To delineate a nested parameter, use an additional parameters key under the top level parameter name. Sweep configs support multi-level nesting.
Specify a probability distribution for your random variables if you use a Bayesian or random hyperparameter search. For each hyperparameter:
Create a top level parameters key in your sweep config.
Within the parameterskey, nest the following:
Specify the name of hyperparameter you want to optimize.
Specify the distribution you want to use for the distribution key. Nest the distribution key-value pair underneath the hyperparameter name.
Specify one or more values to explore. The value (or values) should be inline with the distribution key.
(Optional) Use an additional parameters key under the top level parameter name to delineate a nested parameter.
Nested parameters defined in sweep configuration overwrite keys specified in a W&B run configuration.
For example, suppose you initialize a W&B run with the following configuration in a train.py Python script (see Lines 1-2). Next, you define a sweep configuration in a dictionary called sweep_configuration (see Lines 4-13). You then pass the sweep config dictionary to wandb.sweep to initialize a sweep config (see Line 16).
The nested_param.manual_key that is passed when the W&B run is initialized (line 2) is not accessible. The run.config only possess the key-value pairs that are defined in the sweep configuration dictionary (lines 4-13).
Sweep configuration template
The following template shows how you can configure parameters and specify search constraints. Replace hyperparameter_name with the name of your hyperparameter and any values enclosed in <>.
The proceeding tabs show how to specify common command macros:
Remove the {$interpreter} macro and provide a value explicitly to hardcode the python interpreter. For example, the following code snippet demonstrates how to do this:
If your program does not use argument parsing you can avoid passing arguments all together and take advantage of wandb.init picking up sweep parameters into wandb.config automatically:
command:
- ${env} - ${interpreter} - ${program}
You can change the command to pass arguments the way tools like Hydra expect. See Hydra with W&B for more information.
A sweep configuration consists of nested key-value pairs. Use top-level keys within your sweep configuration to define qualities of your sweep search such as the parameters to search through (parameter key), the methodology to search the parameter space (method key), and more.
The proceeding table lists top-level sweep configuration keys and a brief description. See the respective sections for more information about each key.
Command structure for invoking and passing arguments to the training script
run_cap
Maximum number of runs for this sweep
See the Sweep configuration structure for more information on how to structure your sweep configuration.
metric
Use the metric top-level sweep configuration key to specify the name, the goal, and the target metric to optimize.
Key
Description
name
Name of the metric to optimize.
goal
Either minimize or maximize (Default is minimize).
target
Goal value for the metric you are optimizing. The sweep does not create new runs when if or when a run reaches a target value that you specify. Active agents that have a run executing (when the run reaches the target) wait until the run completes before the agent stops creating new runs.
parameters
In your YAML file or Python script, specify parameters as a top level key. Within the parameters key, provide the name of a hyperparameter you want to optimize. Common hyperparameters include: learning rate, batch size, epochs, optimizers, and more. For each hyperparameter you define in your sweep configuration, specify one or more search constraints.
The proceeding table shows supported hyperparameter search constraints. Based on your hyperparameter and use case, use one of the search constraints below to tell your sweep agent where (in the case of a distribution) or what (value, values, and so forth) to search or use.
Search constraint
Description
values
Specifies all valid values for this hyperparameter. Compatible with grid.
value
Specifies the single valid value for this hyperparameter. Compatible with grid.
distribution
Specify a probability distribution. See the note following this table for information on default values.
probabilities
Specify the probability of selecting each element of values when using random.
min, max
(intor float) Maximum and minimum values. If int, for int_uniform -distributed hyperparameters. If float, for uniform -distributed hyperparameters.
mu
(float) Mean parameter for normal - or lognormal -distributed hyperparameters.
sigma
(float) Standard deviation parameter for normal - or lognormal -distributed hyperparameters.
q
(float) Quantization step size for quantized hyperparameters.
parameters
Nest other parameters inside a root level parameter.
W&B sets the following distributions based on the following conditions if a distribution is not specified:
categorical if you specify values
int_uniform if you specify max and min as integers
uniform if you specify max and min as floats
constant if you provide a set to value
method
Specify the hyperparameter search strategy with the method key. There are three hyperparameter search strategies to choose from: grid, random, and Bayesian search.
Grid search
Iterate over every combination of hyperparameter values. Grid search makes uninformed decisions on the set of hyperparameter values to use on each iteration. Grid search can be computationally costly.
Grid search executes forever if it is searching within in a continuous search space.
Random search
Choose a random, uninformed, set of hyperparameter values on each iteration based on a distribution. Random search runs forever unless you stop the process from the command line, within your python script, or the W&B App UI.
Specify the distribution space with the metric key if you choose random (method: random) search.
Bayesian search
In contrast to random and grid search, Bayesian models make informed decisions. Bayesian optimization uses a probabilistic model to decide which values to use through an iterative process of testing values on a surrogate function before evaluating the objective function. Bayesian search works well for small numbers of continuous parameters but scales poorly. For more information about Bayesian search, see the Bayesian Optimization Primer paper.
Bayesian search runs forever unless you stop the process from the command line, within your python script, or the W&B App UI.
Distribution options for random and Bayesian search
Within the parameter key, nest the name of the hyperparameter. Next, specify the distribution key and specify a distribution for the value.
The proceeding tables lists distributions W&B supports.
Value for distribution key
Description
constant
Constant distribution. Must specify the constant value (value) to use.
categorical
Categorical distribution. Must specify all valid values (values) for this hyperparameter.
int_uniform
Discrete uniform distribution on integers. Must specify max and min as integers.
uniform
Continuous uniform distribution. Must specify max and min as floats.
q_uniform
Quantized uniform distribution. Returns round(X / q) * q where X is uniform. q defaults to 1.
log_uniform
Log-uniform distribution. Returns a value X between exp(min) and exp(max)such that the natural logarithm is uniformly distributed between min and max.
log_uniform_values
Log-uniform distribution. Returns a value X between min and max such that log(X) is uniformly distributed between log(min) and log(max).
q_log_uniform
Quantized log uniform. Returns round(X / q) * q where X is log_uniform. q defaults to 1.
q_log_uniform_values
Quantized log uniform. Returns round(X / q) * q where X is log_uniform_values. q defaults to 1.
inv_log_uniform
Inverse log uniform distribution. Returns X, where log(1/X) is uniformly distributed between min and max.
inv_log_uniform_values
Inverse log uniform distribution. Returns X, where log(1/X) is uniformly distributed between log(1/max) and log(1/min).
normal
Normal distribution. Return value is normally distributed with mean mu (default 0) and standard deviation sigma (default 1).
q_normal
Quantized normal distribution. Returns round(X / q) * q where X is normal. Q defaults to 1.
log_normal
Log normal distribution. Returns a value X such that the natural logarithm log(X) is normally distributed with mean mu (default 0) and standard deviation sigma (default 1).
q_log_normal
Quantized log normal distribution. Returns round(X / q) * q where X is log_normal. q defaults to 1.
early_terminate
Use early termination (early_terminate) to stop poorly performing runs. If early termination occurs, W&B stops the current run before it creates a new run with a new set of hyperparameter values.
You must specify a stopping algorithm if you use early_terminate. Nest the type key within early_terminate within your sweep configuration.
Stopping algorithm
W&B currently supports Hyperband stopping algorithm.
Hyperband hyperparameter optimization evaluates if a program should stop or if it should to continue at one or more pre-set iteration counts, called brackets.
When a W&B run reaches a bracket, the sweep compares that run’s metric to all previously reported metric values. The sweep terminates the run if the run’s metric value is too high (when the goal is minimization) or if the run’s metric is too low (when the goal is maximization).
Brackets are based on the number of logged iterations. The number of brackets corresponds to the number of times you log the metric you are optimizing. The iterations can correspond to steps, epochs, or something in between. The numerical value of the step counter is not used in bracket calculations.
Specify either min_iter or max_iter to create a bracket schedule.
Key
Description
min_iter
Specify the iteration for the first bracket
max_iter
Specify the maximum number of iterations.
s
Specify the total number of brackets (required for max_iter)
eta
Specify the bracket multiplier schedule (default: 3).
strict
Enable ‘strict’ mode that prunes runs aggressively, more closely following the original Hyperband paper. Defaults to false.
Hyperband checks which W&B runs to end once every few minutes. The end run timestamp might differ from the specified brackets if your run or iteration are short.
command
Modify the format and contents with nested values within the command key. You can directly include fixed components such as filenames.
On Unix systems, /usr/bin/env ensures that the OS chooses the correct Python interpreter based on the environment.
W&B supports the following macros for variable components of the command:
Command macro
Description
${env}
/usr/bin/env on Unix systems, omitted on Windows.
${interpreter}
Expands to python.
${program}
Training script filename specified by the sweep configuration program key.
${args}
Hyperparameters and their values in the form --param1=value1 --param2=value2.
${args_no_boolean_flags}
Hyperparameters and their values in the form --param1=value1 except boolean parameters are in the form --boolean_flag_param when True and omitted when False.
${args_no_hyphens}
Hyperparameters and their values in the form param1=value1 param2=value2.
${args_json}
Hyperparameters and their values encoded as JSON.
${args_json_file}
The path to a file containing the hyperparameters and their values encoded as JSON.
${envvar}
A way to pass environment variables. ${envvar:MYENVVAR} __ expands to the value of MYENVVAR environment variable. __