메인 콘텐츠로 건너뛰기
이 페이지에서는 기존 W&B Model Registry에서 계보 그래프를 생성하는 방법을 설명합니다. W&B Registry의 계보 그래프에 대해 자세히 알아보려면 계보 맵 생성 및 보기를 참조하세요.
W&B는 기존 W&B Model Registry의 자산을 새로운 W&B Registry로 이전할 예정입니다. 이 마이그레이션은 W&B에서 완전히 관리하고 트리거하며, 사용자의 개입이 필요하지 않습니다. 이 프로세스는 기존 워크플로우에 대한 중단을 최소화하면서 최대한 원활하게 진행되도록 설계되었습니다. 기존 Model Registry에서 마이그레이션을 참조하세요.
W&B에 모델 아티팩트를 로깅하는 유용한 기능은 계보 그래프입니다. 계보 그래프는 run에서 로깅한 아티팩트와 특정 run에서 사용한 아티팩트를 보여줍니다. 즉, 모델 아티팩트를 로깅할 때 최소한 모델 아티팩트를 사용하거나 생성한 W&B run을 볼 수 있습니다. 아티팩트 종속성 추적을 통해 모델 아티팩트에서 사용한 입력도 볼 수 있습니다. 예를 들어, 다음 이미지는 ML 실험 전반에 걸쳐 생성 및 사용된 아티팩트를 보여줍니다.
왼쪽에서 오른쪽으로 이미지는 다음을 보여줍니다.
  1. jumping-monkey-1 W&B run은 mnist_dataset:v0 데이터셋 아티팩트를 생성했습니다.
  2. vague-morning-5 W&B run은 mnist_dataset:v0 데이터셋 아티팩트를 사용하여 모델을 트레이닝했습니다. 이 W&B run의 출력은 mnist_model:v0라는 모델 아티팩트였습니다.
  3. serene-haze-6이라는 run은 모델 아티팩트(mnist_model:v0)를 사용하여 모델을 평가했습니다.

아티팩트 종속성 추적

use_artifact API를 사용하여 데이터셋 아티팩트를 W&B run에 대한 입력으로 선언하여 종속성을 추적합니다. 다음 코드 조각은 use_artifact API를 사용하는 방법을 보여줍니다.
# Initialize a run
run = wandb.init(project=project, entity=entity)

# Get artifact, mark it as a dependency
artifact = run.use_artifact(artifact_or_name="name", aliases="<alias>")
아티팩트를 검색한 후에는 해당 아티팩트를 사용하여 (예를 들어) 모델의 성능을 평가할 수 있습니다.
I