function pr_curve
y_true
: True binary labels. The shape should be (num_samples
,).y_probas
: Predicted scores or probabilities for each class. These can be probability estimates, confidence scores, or non-thresholded decision values. The shape should be (num_samples
,num_classes
).labels
: Optional list of class names to replace numeric values iny_true
for easier plot interpretation. For example,labels = ['dog', 'cat', 'owl']
will replace 0 with ‘dog’, 1 with ‘cat’, and 2 with ‘owl’ in the plot. If not provided, numeric values fromy_true
will be used.classes_to_plot
: Optional list of unique class values from y_true to be included in the plot. If not specified, all unique classes in y_true will be plotted.interp_size
: Number of points to interpolate recall values. The recall values will be fixed tointerp_size
uniformly distributed points in the range [0, 1], and the precision will be interpolated accordingly.title
: Title of the plot. Defaults to “Precision-Recall Curve”.split_table
: Whether the table should be split into a separate section in the W&B UI. IfTrue
, the table will be displayed in a section named “Custom Chart Tables”. Default isFalse
.
CustomChart
: A custom chart object that can be logged to W&B. To log the chart, pass it towandb.log()
.
wandb.Error
: If NumPy, pandas, or scikit-learn is not installed.