BoundingBoxes2D
3 minute read
Format images with 2D bounding box overlays for logging to W&B.
BoundingBoxes2D(
val: dict,
key: str
) -> None
Args | |
---|---|
val |
(dictionary) A dictionary of the following form: box_data: (list of dictionaries) One dictionary for each bounding box, containing: position: (dictionary) the position and size of the bounding box, in one of two formats Note that boxes need not all use the same format. {“minX”, “minY”, “maxX”, “maxY”}: (dictionary) A set of coordinates defining the upper and lower bounds of the box (the bottom left and top right corners) {“middle”, “width”, “height”}: (dictionary) A set of coordinates defining the center and dimensions of the box, with “middle” as a list [x, y] for the center point and “width” and “height” as numbers domain: (string) One of two options for the bounding box coordinate domain null: By default, or if no argument is passed, the coordinate domain is assumed to be relative to the original image, expressing this box as a fraction or percentage of the original image. This means all coordinates and dimensions passed into the “position” argument are floating point numbers between 0 and 1. “pixel”: (string literal) The coordinate domain is set to the pixel space. This means all coordinates and dimensions passed into “position” are integers within the bounds of the image dimensions. class_id: (integer) The class label id for this box scores: (dictionary of string to number, optional) A mapping of named fields to numerical values (float or int), can be used for filtering boxes in the UI based on a range of values for the corresponding field box_caption: (string, optional) A string to be displayed as the label text above this box in the UI, often composed of the class label, class name, and/or scores class_labels: (dictionary, optional) A map of integer class labels to their readable class names |
key |
(string) The readable name or id for this set of bounding boxes (e.g. predictions, ground_truth) |
Examples:
Log bounding boxes for a single image
import numpy as np
import wandb
run = wandb.init()
image = np.random.randint(low=0, high=256, size=(200, 300, 3))
class_labels = {0: "person", 1: "car", 2: "road", 3: "building"}
img = wandb.Image(
image,
boxes={
"predictions": {
"box_data": [
{
# one box expressed in the default relative/fractional domain
"position": {
"minX": 0.1,
"maxX": 0.2,
"minY": 0.3,
"maxY": 0.4,
},
"class_id": 1,
"box_caption": class_labels[1],
"scores": {"acc": 0.2, "loss": 1.2},
},
{
# another box expressed in the pixel domain
"position": {
"middle": [150, 20],
"width": 68,
"height": 112,
},
"domain": "pixel",
"class_id": 3,
"box_caption": "a building",
"scores": {"acc": 0.5, "loss": 0.7},
},
# Log as many boxes an as needed
],
"class_labels": class_labels,
}
},
)
run.log({"driving_scene": img})
Log a bounding box overlay to a Table
import numpy as np
import wandb
run = wandb.init()
image = np.random.randint(low=0, high=256, size=(200, 300, 3))
class_labels = {0: "person", 1: "car", 2: "road", 3: "building"}
class_set = wandb.Classes(
[
{"name": "person", "id": 0},
{"name": "car", "id": 1},
{"name": "road", "id": 2},
{"name": "building", "id": 3},
]
)
img = wandb.Image(
image,
boxes={
"predictions": {
"box_data": [
{
# one box expressed in the default relative/fractional domain
"position": {
"minX": 0.1,
"maxX": 0.2,
"minY": 0.3,
"maxY": 0.4,
},
"class_id": 1,
"box_caption": class_labels[1],
"scores": {"acc": 0.2, "loss": 1.2},
},
{
# another box expressed in the pixel domain
"position": {
"middle": [150, 20],
"width": 68,
"height": 112,
},
"domain": "pixel",
"class_id": 3,
"box_caption": "a building",
"scores": {"acc": 0.5, "loss": 0.7},
},
# Log as many boxes an as needed
],
"class_labels": class_labels,
}
},
classes=class_set,
)
table = wandb.Table(columns=["image"])
table.add_data(img)
run.log({"driving_scene": table})
Methods
type_name
@classmethod
type_name() -> str
validate
validate(
val: dict
) -> bool
Feedback
Was this page helpful?
Glad to hear it! If you have more to say, please let us know.
Sorry to hear that. Please tell us how we can improve.