Image
2 minute read
A class for logging images to W&B.
Image(
data_or_path: "ImageDataOrPathType",
mode: Optional[str] = None,
caption: Optional[str] = None,
grouping: Optional[int] = None,
classes: Optional[Union['Classes', Sequence[dict]]] = None,
boxes: Optional[Union[Dict[str, 'BoundingBoxes2D'], Dict[str, dict]]] = None,
masks: Optional[Union[Dict[str, 'ImageMask'], Dict[str, dict]]] = None,
file_type: Optional[str] = None,
normalize: bool = (True)
) -> None
Args | |
---|---|
data_or_path |
Accepts numpy array/pytorch tensor of image data, a PIL image object, or a path to an image file. If a numpy array or pytorch tensor is provided, the image data will be saved to the given file type. If the values are not in the range [0, 255] or all values are in the range [0, 1], the image pixel values will be normalized to the range [0, 255] unless normalize is set to False. - pytorch tensor should be in the format (channel, height, width) - numpy array should be in the format (height, width, channel) |
mode |
The PIL mode for an image. Most common are “L”, “RGB”, “RGBA”. Full explanation at https://pillow.readthedocs.io/en/stable/handbook/concepts.html#modes |
caption |
Label for display of image. |
grouping |
The grouping number for the image. |
classes |
A list of class information for the image, used for labeling bounding boxes, and image masks. |
boxes |
A dictionary containing bounding box information for the image. see: https://docs.wandb.ai/ref/python/data-types/boundingboxes2d/ |
masks |
A dictionary containing mask information for the image. see: https://docs.wandb.ai/ref/python/data-types/imagemask/ |
file_type |
The file type to save the image as. This parameter has no effect if data_or_path is a path to an image file. |
normalize |
If True, normalize the image pixel values to fall within the range of [0, 255]. Normalize is only applied if data_or_path is a numpy array or pytorch tensor. |
Attributes |
---|
Methods
all_boxes
@classmethod
all_boxes(
images: Sequence['Image'],
run: "LocalRun",
run_key: str,
step: Union[int, str]
) -> Union[List[Optional[dict]], bool]
all_captions
@classmethod
all_captions(
images: Sequence['Media']
) -> Union[bool, Sequence[Optional[str]]]
all_masks
@classmethod
all_masks(
images: Sequence['Image'],
run: "LocalRun",
run_key: str,
step: Union[int, str]
) -> Union[List[Optional[dict]], bool]
guess_mode
guess_mode(
data: Union['np.ndarray', 'torch.Tensor'],
file_type: Optional[str] = None
) -> str
Guess what type of image the np.array is representing.
Class Variables | |
---|---|
MAX_DIMENSION |
65500 |
MAX_ITEMS |
108 |
Feedback
Was this page helpful?
Glad to hear it! If you have more to say, please let us know.
Sorry to hear that. Please tell us how we can improve.