ImageMask
2 minute read
Format image masks or overlays for logging to W&B.
ImageMask(
val: dict,
key: str
) -> None
Args | |
---|---|
val |
(dictionary) One of these two keys to represent the image: mask_data : (2D numpy array) The mask containing an integer class label for each pixel in the image path : (string) The path to a saved image file of the mask class_labels : (dictionary of integers to strings, optional) A mapping of the integer class labels in the mask to readable class names. These will default to class_0, class_1, class_2, etc. |
key |
(string) The readable name or id for this mask type (e.g. predictions, ground_truth) |
Examples:
Logging a single masked image
import numpy as np
import wandb
run = wandb.init()
image = np.random.randint(low=0, high=256, size=(100, 100, 3), dtype=np.uint8)
predicted_mask = np.empty((100, 100), dtype=np.uint8)
ground_truth_mask = np.empty((100, 100), dtype=np.uint8)
predicted_mask[:50, :50] = 0
predicted_mask[50:, :50] = 1
predicted_mask[:50, 50:] = 2
predicted_mask[50:, 50:] = 3
ground_truth_mask[:25, :25] = 0
ground_truth_mask[25:, :25] = 1
ground_truth_mask[:25, 25:] = 2
ground_truth_mask[25:, 25:] = 3
class_labels = {0: "person", 1: "tree", 2: "car", 3: "road"}
masked_image = wandb.Image(
image,
masks={
"predictions": {
"mask_data": predicted_mask,
"class_labels": class_labels,
},
"ground_truth": {
"mask_data": ground_truth_mask,
"class_labels": class_labels,
},
},
)
run.log({"img_with_masks": masked_image})
Log a masked image inside a Table
import numpy as np
import wandb
run = wandb.init()
image = np.random.randint(low=0, high=256, size=(100, 100, 3), dtype=np.uint8)
predicted_mask = np.empty((100, 100), dtype=np.uint8)
ground_truth_mask = np.empty((100, 100), dtype=np.uint8)
predicted_mask[:50, :50] = 0
predicted_mask[50:, :50] = 1
predicted_mask[:50, 50:] = 2
predicted_mask[50:, 50:] = 3
ground_truth_mask[:25, :25] = 0
ground_truth_mask[25:, :25] = 1
ground_truth_mask[:25, 25:] = 2
ground_truth_mask[25:, 25:] = 3
class_labels = {0: "person", 1: "tree", 2: "car", 3: "road"}
class_set = wandb.Classes(
[
{"name": "person", "id": 0},
{"name": "tree", "id": 1},
{"name": "car", "id": 2},
{"name": "road", "id": 3},
]
)
masked_image = wandb.Image(
image,
masks={
"predictions": {
"mask_data": predicted_mask,
"class_labels": class_labels,
},
"ground_truth": {
"mask_data": ground_truth_mask,
"class_labels": class_labels,
},
},
classes=class_set,
)
table = wandb.Table(columns=["image"])
table.add_data(masked_image)
run.log({"random_field": table})
Methods
type_name
@classmethod
type_name() -> str
validate
validate(
val: dict
) -> bool
Feedback
Was this page helpful?
Glad to hear it! If you have more to say, please let us know.
Sorry to hear that. Please tell us how we can improve.