Skip to main content

log

Upload run data.

log(
data: dict[str, Any],
step: (int | None) = None,
commit: (bool | None) = None,
sync: (bool | None) = None
) -> None

Use log to log data from runs, such as scalars, images, video, histograms, plots, and tables.

See our guides to logging for live examples, code snippets, best practices, and more.

The most basic usage is run.log({"train-loss": 0.5, "accuracy": 0.9}). This will save the loss and accuracy to the run's history and update the summary values for these metrics.

Visualize logged data in the workspace at wandb.ai, or locally on a self-hosted instance of the W&B app, or export data to visualize and explore locally, e.g. in Jupyter notebooks, with our API.

Logged values don't have to be scalars. Logging any wandb object is supported. For example run.log({"example": wandb.Image("myimage.jpg")}) will log an example image which will be displayed nicely in the W&B UI. See the reference documentation for all of the different supported types or check out our guides to logging for examples, from 3D molecular structures and segmentation masks to PR curves and histograms. You can use wandb.Table to log structured data. See our guide to logging tables for details.

The W&B UI organizes metrics with a forward slash (/) in their name into sections named using the text before the final slash. For example, the following results in two sections named "train" and "validate":

run.log(
{
"train/accuracy": 0.9,
"train/loss": 30,
"validate/accuracy": 0.8,
"validate/loss": 20,
}
)

Only one level of nesting is supported; run.log({"a/b/c": 1}) produces a section named "a/b".

run.log is not intended to be called more than a few times per second. For optimal performance, limit your logging to once every N iterations, or collect data over multiple iterations and log it in a single step.

The W&B step

With basic usage, each call to log creates a new "step". The step must always increase, and it is not possible to log to a previous step.

Note that you can use any metric as the X axis in charts. In many cases, it is better to treat the W&B step like you'd treat a timestamp rather than a training step.

# Example: log an "epoch" metric for use as an X axis.
run.log({"epoch": 40, "train-loss": 0.5})

See also define_metric.

It is possible to use multiple log invocations to log to the same step with the step and commit parameters. The following are all equivalent:

# Normal usage:
run.log({"train-loss": 0.5, "accuracy": 0.8})
run.log({"train-loss": 0.4, "accuracy": 0.9})

# Implicit step without auto-incrementing:
run.log({"train-loss": 0.5}, commit=False)
run.log({"accuracy": 0.8})
run.log({"train-loss": 0.4}, commit=False)
run.log({"accuracy": 0.9})

# Explicit step:
run.log({"train-loss": 0.5}, step=current_step)
run.log({"accuracy": 0.8}, step=current_step)
current_step += 1
run.log({"train-loss": 0.4}, step=current_step)
run.log({"accuracy": 0.9}, step=current_step)
Args
dataA dict with str keys and values that are serializable Python objects including: int, float and string; any of the wandb.data_types; lists, tuples and NumPy arrays of serializable Python objects; other dicts of this structure.
stepThe step number to log. If None, then an implicit auto-incrementing step is used. See the notes in the description.
commitIf true, finalize and upload the step. If false, then accumulate data for the step. See the notes in the description. If step is None, then the default is commit=True; otherwise, the default is commit=False.
syncThis argument is deprecated and does nothing.

Examples:

For more and more detailed examples, see our guides to logging.

Basic usage

import wandb

run = wandb.init()
run.log({"accuracy": 0.9, "epoch": 5})

Incremental logging

import wandb

run = wandb.init()
run.log({"loss": 0.2}, commit=False)
# Somewhere else when I'm ready to report this step:
run.log({"accuracy": 0.8})

Histogram

import numpy as np
import wandb

# sample gradients at random from normal distribution
gradients = np.random.randn(100, 100)
run = wandb.init()
run.log({"gradients": wandb.Histogram(gradients)})

Image from numpy

import numpy as np
import wandb

run = wandb.init()
examples = []
for i in range(3):
pixels = np.random.randint(low=0, high=256, size=(100, 100, 3))
image = wandb.Image(pixels, caption=f"random field {i}")
examples.append(image)
run.log({"examples": examples})

Image from PIL

import numpy as np
from PIL import Image as PILImage
import wandb

run = wandb.init()
examples = []
for i in range(3):
pixels = np.random.randint(
low=0, high=256, size=(100, 100, 3), dtype=np.uint8
)
pil_image = PILImage.fromarray(pixels, mode="RGB")
image = wandb.Image(pil_image, caption=f"random field {i}")
examples.append(image)
run.log({"examples": examples})

Video from numpy

import numpy as np
import wandb

run = wandb.init()
# axes are (time, channel, height, width)
frames = np.random.randint(
low=0, high=256, size=(10, 3, 100, 100), dtype=np.uint8
)
run.log({"video": wandb.Video(frames, fps=4)})

Matplotlib Plot

from matplotlib import pyplot as plt
import numpy as np
import wandb

run = wandb.init()
fig, ax = plt.subplots()
x = np.linspace(0, 10)
y = x * x
ax.plot(x, y) # plot y = x^2
run.log({"chart": fig})

PR Curve

import wandb

run = wandb.init()
run.log({"pr": wandb.plot.pr_curve(y_test, y_probas, labels)})

3D Object

import wandb

run = wandb.init()
run.log(
{
"generated_samples": [
wandb.Object3D(open("sample.obj")),
wandb.Object3D(open("sample.gltf")),
wandb.Object3D(open("sample.glb")),
]
}
)
Raises
wandb.Errorif called before wandb.init
ValueErrorif invalid data is passed
Was this page helpful?👍👎