Skip to main content


The following Quickstart demonstrates how to log data tables, visualize data, and query data.

Select the button below to try a PyTorch Quickstart example project on MNIST data.

1. Log a tableโ€‹

Log a table with W&B. You can either construct a new table or pass a Pandas DataFrame.

To construct and log a new Table, you will use:

  • wandb.init(): Create a run to track results.
  • wandb.Table(): Create a new table object.
    • columns: Set the column names.
    • data: Set the contents of each row.
  • run.log(): Log the table to save it to W&B.

Here's an example:

import wandb

run = wandb.init(project="table-test")
# Create and log a new table.
my_table = wandb.Table(columns=["a", "b"], data=[["a1", "b1"], ["a2", "b2"]])
run.log({"Table Name": my_table})

2. Visualize tables in your project workspaceโ€‹

View the resulting table in your workspace.

  1. Navigate to your project in the W&B App.
  2. Select the name of your run in your project workspace. A new panel is added for each unique table key.

In this example, my_table, is logged under the key "Table Name".

3. Compare across model versionsโ€‹

Log sample tables from multiple W&B Runs and compare results in the project workspace. In this example workspace, we show how to combine rows from multiple different versions in the same table.

Use the table filter, sort, and grouping features to explore and evaluate model results.

Was this page helpful?๐Ÿ‘๐Ÿ‘Ž